TY - JOUR
T1 - Multivariate gamma regression
T2 - Parameter estimation, hypothesis testing, and its application
AU - Rahayu, Anita
AU - Purhadi,
AU - Sutikno,
AU - Prastyo, Dedy Dwi
N1 - Publisher Copyright:
© 2020 by the authors.
PY - 2020/5/1
Y1 - 2020/5/1
N2 - Gamma distribution is a general type of statistical distribution that can be applied in various fields, mainly when the distribution of data is not symmetrical. When predictor variables also affect positive outcome, then gamma regression plays a role. In many cases, the predictor variables give effect to several responses simultaneously. In this article, we develop a multivariate gamma regression (MGR), which is one type of non-linear regression with response variables that follow a multivariate gamma (MG) distribution. This work also provides the parameter estimation procedure, test statistics, and hypothesis testing for the significance of the parameter, partially and simultaneously. The parameter estimators are obtained using the maximum likelihood estimation (MLE) that is optimized by numerical iteration using the Berndt-Hall-Hall-Hausman (BHHH) algorithm. The simultaneous test for the model's significance is derived using the maximum likelihood ratio test (MLRT), whereas the partial test uses the Wald test. The proposed MGR model is applied to model the three dimensions of the human development index (HDI) with five predictor variables. The unit of observation is regency/municipality in Java, Indonesia, in 2018. The empirical results show that modeling using multiple predictors makes more sense compared to the model when it only employs a single predictor.
AB - Gamma distribution is a general type of statistical distribution that can be applied in various fields, mainly when the distribution of data is not symmetrical. When predictor variables also affect positive outcome, then gamma regression plays a role. In many cases, the predictor variables give effect to several responses simultaneously. In this article, we develop a multivariate gamma regression (MGR), which is one type of non-linear regression with response variables that follow a multivariate gamma (MG) distribution. This work also provides the parameter estimation procedure, test statistics, and hypothesis testing for the significance of the parameter, partially and simultaneously. The parameter estimators are obtained using the maximum likelihood estimation (MLE) that is optimized by numerical iteration using the Berndt-Hall-Hall-Hausman (BHHH) algorithm. The simultaneous test for the model's significance is derived using the maximum likelihood ratio test (MLRT), whereas the partial test uses the Wald test. The proposed MGR model is applied to model the three dimensions of the human development index (HDI) with five predictor variables. The unit of observation is regency/municipality in Java, Indonesia, in 2018. The empirical results show that modeling using multiple predictors makes more sense compared to the model when it only employs a single predictor.
KW - Human development dimensions
KW - Maximum likelihood estimation
KW - Maximum likelihood ratio test
KW - Multivariate gamma regression;Wald test
UR - http://www.scopus.com/inward/record.url?scp=85085641259&partnerID=8YFLogxK
U2 - 10.3390/SYM12050813
DO - 10.3390/SYM12050813
M3 - Article
AN - SCOPUS:85085641259
SN - 2073-8994
VL - 12
JO - Symmetry
JF - Symmetry
IS - 5
M1 - 813
ER -