TY - GEN
T1 - Nanocarbon from rice straw as supercapacitor electrode
AU - Lianto, Michael
AU - Kiniasih, Sulistiyawati Dewi
AU - Ardiani, Irma Septi
AU - Baqiya, Malik Anjelh
AU - Pratiwi, Vania Mitha
N1 - Publisher Copyright:
© 2019 Trans Tech Publications Ltd, Switzerland.
PY - 2019
Y1 - 2019
N2 - Rice straw waste in Indonesia is abundant and not yet used optimally. The composition of rice straw is 40% cellulose, 30% hemicellulose, 15% silica and 15% lignin so it is potentially to be a raw material of active carbon and supercapasitor electrode. Many efforts has been done to increase the value of capacitance of electrode like increase the surface area with activation and milling process. In this research used the variation of activator substance and the variation of milling velocity, they are H3PO4 450 rpm, H3PO4 600 rpm, and KOH 450 rpm. The purposes of this research are identify and characterize the rice straw charcoal material as nanocarbon and also knowing the nanocarbon quality of rice straw charcoal material as supercapacitor electrode. The methods are carbonization, activation, and solid state reaction. The result of this research shows the value of capacitance at H3PO4 450 rpm, H3PO4 600 rpm, and KOH 450 rpm are 28,96 F/g; 30,89 F/g; dan 19,31 F/g. From this research, we can conclude that activator substance and milling velocity affect the value of capacitance that is produced. The result of SEM-EDX test is comparable with the result of cyclic voltammetry test, the higher number of pores the higher value of capacitances produced.
AB - Rice straw waste in Indonesia is abundant and not yet used optimally. The composition of rice straw is 40% cellulose, 30% hemicellulose, 15% silica and 15% lignin so it is potentially to be a raw material of active carbon and supercapasitor electrode. Many efforts has been done to increase the value of capacitance of electrode like increase the surface area with activation and milling process. In this research used the variation of activator substance and the variation of milling velocity, they are H3PO4 450 rpm, H3PO4 600 rpm, and KOH 450 rpm. The purposes of this research are identify and characterize the rice straw charcoal material as nanocarbon and also knowing the nanocarbon quality of rice straw charcoal material as supercapacitor electrode. The methods are carbonization, activation, and solid state reaction. The result of this research shows the value of capacitance at H3PO4 450 rpm, H3PO4 600 rpm, and KOH 450 rpm are 28,96 F/g; 30,89 F/g; dan 19,31 F/g. From this research, we can conclude that activator substance and milling velocity affect the value of capacitance that is produced. The result of SEM-EDX test is comparable with the result of cyclic voltammetry test, the higher number of pores the higher value of capacitances produced.
KW - Active carbon
KW - Electrode
KW - Nanocarbon
KW - Rice straw
KW - Supercapacitor
UR - http://www.scopus.com/inward/record.url?scp=85071935531&partnerID=8YFLogxK
U2 - 10.4028/www.scientific.net/MSF.964.180
DO - 10.4028/www.scientific.net/MSF.964.180
M3 - Conference contribution
AN - SCOPUS:85071935531
SN - 9783035714340
T3 - Materials Science Forum
SP - 180
EP - 184
BT - Seminar on Materials Science and Technology
A2 - Noerochim, Lukman
PB - Trans Tech Publications Ltd
T2 - 4th International Seminar on Science and Technology, ISST 2018
Y2 - 9 August 2018 through 9 August 2018
ER -