TY - GEN
T1 - Numerical analysis of conjugate porous media for increasing heat transfer rate in fixed bed spheres
AU - Purnadiana, Farida Rahmawati
AU - Prabowo,
AU - Sasongko, Herman
N1 - Publisher Copyright:
© 2019 Author(s).
PY - 2019/12/10
Y1 - 2019/12/10
N2 - Porous media becomes a potential alternative for cooling technology since it has large contact surface area that strongly enhance heat transfer and exchanging energy within pore channel. A computational fluid dynamics of conjugate heat transfer and periodic boundary condition were applied in FLUENT 6.3.26. Simulations of fixed bed spheres as porous media inside pipe flow were carried out in the range of Reynolds number 5000 to 80000. Simulation methodology was validated by analytical prediction. In the range of Reynolds number 100 - 6000 is very good agreement, however in the range of Reynolds number above 6000 - 10000 just fairly agree. This is caused by the fact that in the range of Reynolds number above 6000 analytical model does not use turbulence model. Fluctuation effects are just considered as dispersion. The results shows that the fixed bed spheres for porous structure gives the highest value of the cooling effectiveness than the other porous structures except for ReD ≤ 10000, the cooling effectiveness of the discrete porous structure is higher compared to the analyzed fixed bed porous structures. At ReD = 15,000 the fixed bed spheres gives 28%, 65% and 160% higher effectiveness compared to the discrete porous structure, 60° broken ribs and 90° continuous ribs, respectively.
AB - Porous media becomes a potential alternative for cooling technology since it has large contact surface area that strongly enhance heat transfer and exchanging energy within pore channel. A computational fluid dynamics of conjugate heat transfer and periodic boundary condition were applied in FLUENT 6.3.26. Simulations of fixed bed spheres as porous media inside pipe flow were carried out in the range of Reynolds number 5000 to 80000. Simulation methodology was validated by analytical prediction. In the range of Reynolds number 100 - 6000 is very good agreement, however in the range of Reynolds number above 6000 - 10000 just fairly agree. This is caused by the fact that in the range of Reynolds number above 6000 analytical model does not use turbulence model. Fluctuation effects are just considered as dispersion. The results shows that the fixed bed spheres for porous structure gives the highest value of the cooling effectiveness than the other porous structures except for ReD ≤ 10000, the cooling effectiveness of the discrete porous structure is higher compared to the analyzed fixed bed porous structures. At ReD = 15,000 the fixed bed spheres gives 28%, 65% and 160% higher effectiveness compared to the discrete porous structure, 60° broken ribs and 90° continuous ribs, respectively.
UR - http://www.scopus.com/inward/record.url?scp=85076775342&partnerID=8YFLogxK
U2 - 10.1063/1.5138291
DO - 10.1063/1.5138291
M3 - Conference contribution
AN - SCOPUS:85076775342
T3 - AIP Conference Proceedings
BT - Innovative Science and Technology in Mechanical Engineering for Industry 4.0
A2 - Djanali, Vivien
A2 - Mubarok, Fahmi
A2 - Pramujati, Bambang
A2 - Suwarno, null
PB - American Institute of Physics Inc.
T2 - 4th International Conference on Mechanical Engineering: Innovative Science and Technology in Mechanical Engineering for Industry 4.0, ICOME 2019
Y2 - 28 August 2019 through 29 August 2019
ER -