Abstract

High-performance fiber-reinforced concrete (HPFRC) made from engineered cementitious composite can significantly enhance structural performance. The ductility of the structure and the shear load resistance can be enhanced, especially for short-span elements. Improved structural performance can reduce the risk of structural failure during an extreme event of an earthquake. This paper presents numerical modeling of the HPFRC shear panel structure using a multi-surface plasticity model embedded inside an in-house 3D-NLFEA finite element package. The model's parameters were calibrated with the existing test of the HPFRC shear panel. For HPFRC under compression, the peak strain, elastic modulus, and the softening function related to the compressive fracture energy were adjusted. For HPFRC under tension, the strain hardening and crack localization when the HPFRC softens were also proposed. The comparisons were made between the numerical model and the existing test of the HPFRC shear panel. Some conclusions were drawn on the accuracy of the model and its possible application at the structural level.

Original languageEnglish
Pages (from-to)MAT-10-1-MAT-10-6
JournalProceedings of International Structural Engineering and Construction
Volume10
Issue number1
DOIs
Publication statusPublished - 2023
Event12th International Structural Engineering and Construction Conference, ISEC-12 2023 - Chicago, United States
Duration: 14 Aug 202318 Aug 2023

Keywords

  • Displacement
  • Engineered cementitious composite (ECC)
  • HPFRC
  • Reinforced bars

Fingerprint

Dive into the research topics of 'NUMERICAL MODELING OF HIGHPERFORMANCE FIBER-REINFORCED CONCRETE SHEAR PANEL'. Together they form a unique fingerprint.

Cite this