TY - GEN
T1 - Numerical Study on the Stress Distribution Analysis of Two-Planar DKDT Tubular Joint Under Variation of Axial Loading Conditions
AU - Noviyanti, Irma
AU - Prastianto, Rudi Walujo
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
PY - 2023
Y1 - 2023
N2 - A multiplanar tubular joint is the most common tubular joint type of jacket offshore platforms. Nevertheless, previous studies subjected to this topic were relatively limited. The chosen tubular joint analyzed in this paper is obtained from an existing minimum jacket platform and numerically analyzed by using FE model. This research has the objective to obtain stress distribution along the brace-chord intersection lines of a two-planar DKDT welded tubular joint under three modes of axial loading: tension, compression, and combination of both. The stress distribution will be evaluated at the weld toe of both on the chord and the brace sides. The result shows that stresses occurred on the chord side are greater than on the brace side. Though the stress distribution trend for both side of the weld toe is close to similar, there are several shifting on the exact location. Hotspot stress from the tension axial loading case has the greatest value followed by compression axial loading and combined axial loading cases.
AB - A multiplanar tubular joint is the most common tubular joint type of jacket offshore platforms. Nevertheless, previous studies subjected to this topic were relatively limited. The chosen tubular joint analyzed in this paper is obtained from an existing minimum jacket platform and numerically analyzed by using FE model. This research has the objective to obtain stress distribution along the brace-chord intersection lines of a two-planar DKDT welded tubular joint under three modes of axial loading: tension, compression, and combination of both. The stress distribution will be evaluated at the weld toe of both on the chord and the brace sides. The result shows that stresses occurred on the chord side are greater than on the brace side. Though the stress distribution trend for both side of the weld toe is close to similar, there are several shifting on the exact location. Hotspot stress from the tension axial loading case has the greatest value followed by compression axial loading and combined axial loading cases.
KW - DKDT multiplanar tubular joint
KW - Finite element analysis
KW - Local stress distribution
UR - http://www.scopus.com/inward/record.url?scp=85137105211&partnerID=8YFLogxK
U2 - 10.1007/978-981-19-0867-5_3
DO - 10.1007/978-981-19-0867-5_3
M3 - Conference contribution
AN - SCOPUS:85137105211
SN - 9789811908668
T3 - Lecture Notes in Mechanical Engineering
SP - 19
EP - 26
BT - Recent Advances in Mechanical Engineering - Select Proceedings of ICOME 2021
A2 - Tolj, Ivan
A2 - Reddy, M.V.
A2 - Syaifudin, Achmad
PB - Springer Science and Business Media Deutschland GmbH
T2 - 5th International Conference on Mechanical Engineering, ICOME 2021
Y2 - 25 August 2021 through 26 August 2021
ER -