TY - JOUR
T1 - Numerical Study the Effect of Gap Ratio on Flow Characteristics and Heat Transfer in Staggered Tube Banks
AU - Ariansyah, M. N.
AU - Diana, L.
AU - Satrio, D.
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2022/2/4
Y1 - 2022/2/4
N2 - Condenser is a type of heat exchanger that serves as condensation for turbine output steam. In general, a steam power plant uses a surface condenser. This type of condenser is a type of shell and tube. Condensers have a phenomenon of convection heat transfer. The change in distance between condenser tubes is one way to increase the rate of heat transfer. To produce maximum heat transfer, it can be determined by the variety of distances between tubes. The research was conducted by analyzing the flow characteristic and heat transfer around condenser tube banks with gap ratio variation (s/d), which compares transverse distance (ST ) and tube diameter (d) with variations of 3.2, 2.7, 2, and 1.7. 2-dimensional simulation with Computational Fluid Dynamics (CFD) is a numerical method and algorithm for solving and analyzing problems that occur in fluid flows. Based on the results obtained, the smaller the Gap Ratio, the lower the outlet temperature produced and the maximum heat transfer, but the pressure drop value obtained the bigger. Also, the smaller Gap ratio, the bigger v max produced. The lowest outlet temperature value at the variation of 1.7 is 310.66 K, and the coefficient of heat transfer is 103.34 W/m2K. Pressure drop produced at variation 1.7 is 515.99 Pa. Variation 2 is the best gap ratio variation, seen from the heat transfer result and the pressure drop value is not too large. The coefficient heat transfer and pressure drop in variation 2 are 76.95 W/m2K and 119.17 Pa.
AB - Condenser is a type of heat exchanger that serves as condensation for turbine output steam. In general, a steam power plant uses a surface condenser. This type of condenser is a type of shell and tube. Condensers have a phenomenon of convection heat transfer. The change in distance between condenser tubes is one way to increase the rate of heat transfer. To produce maximum heat transfer, it can be determined by the variety of distances between tubes. The research was conducted by analyzing the flow characteristic and heat transfer around condenser tube banks with gap ratio variation (s/d), which compares transverse distance (ST ) and tube diameter (d) with variations of 3.2, 2.7, 2, and 1.7. 2-dimensional simulation with Computational Fluid Dynamics (CFD) is a numerical method and algorithm for solving and analyzing problems that occur in fluid flows. Based on the results obtained, the smaller the Gap Ratio, the lower the outlet temperature produced and the maximum heat transfer, but the pressure drop value obtained the bigger. Also, the smaller Gap ratio, the bigger v max produced. The lowest outlet temperature value at the variation of 1.7 is 310.66 K, and the coefficient of heat transfer is 103.34 W/m2K. Pressure drop produced at variation 1.7 is 515.99 Pa. Variation 2 is the best gap ratio variation, seen from the heat transfer result and the pressure drop value is not too large. The coefficient heat transfer and pressure drop in variation 2 are 76.95 W/m2K and 119.17 Pa.
UR - http://www.scopus.com/inward/record.url?scp=85124822638&partnerID=8YFLogxK
U2 - 10.1088/1755-1315/972/1/012065
DO - 10.1088/1755-1315/972/1/012065
M3 - Conference article
AN - SCOPUS:85124822638
SN - 1755-1307
VL - 972
JO - IOP Conference Series: Earth and Environmental Science
JF - IOP Conference Series: Earth and Environmental Science
IS - 1
M1 - 012065
T2 - 6th International Conference on Marine Technology, SENTA 2021
Y2 - 27 November 2021
ER -