TY - JOUR
T1 - Optimization of thermal conductivity lightweight brick type AAC (Autoclaved Aerated Concrete) effect of Si & Ca composition by using Artificial Neural Network (ANN)
AU - Zulkifli,
AU - Wiryawan, G. P.
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2018/4/12
Y1 - 2018/4/12
N2 - Lightweight brick is the most important component of building construction, therefore it is necessary to have lightweight thermal, mechanical and aqustic thermal properties that meet the standard, in this paper which is discussed is the domain of light brick thermal conductivity properties. The advantage of lightweight brick has a low density (500-650 kg/m3), more economical, can reduce the load 30-40% compared to conventional brick (clay brick). In this research, Artificial Neural Network (ANN) is used to predict the thermal conductivity of lightweight brick type Autoclaved Aerated Concrete (AAC). Based on the training and evaluation that have been done on 10 model of ANN with number of hidden node 1 to 10, obtained that ANN with 3 hidden node have the best performance. It is known from the mean value of MSE (Mean Square Error) validation for three training times of 0.003269. This ANN was further used to predict the thermal conductivity of four light brick samples. The predicted results for each of the AAC1, AAC2, AAC3 and AAC4 light brick samples were 0.243 W/m.K, respectively; 0.29 W/m.K; 0.32 W/m.K; and 0.32 W/m.K. Furthermore, ANN is used to determine the effect of silicon composition (Si), Calcium (Ca), to light brick thermal conductivity. ANN simulation results show that the thermal conductivity increases with increasing Si composition. Si content is allowed maximum of 26.57%, while the Ca content in the range 20.32% - 30.35%.
AB - Lightweight brick is the most important component of building construction, therefore it is necessary to have lightweight thermal, mechanical and aqustic thermal properties that meet the standard, in this paper which is discussed is the domain of light brick thermal conductivity properties. The advantage of lightweight brick has a low density (500-650 kg/m3), more economical, can reduce the load 30-40% compared to conventional brick (clay brick). In this research, Artificial Neural Network (ANN) is used to predict the thermal conductivity of lightweight brick type Autoclaved Aerated Concrete (AAC). Based on the training and evaluation that have been done on 10 model of ANN with number of hidden node 1 to 10, obtained that ANN with 3 hidden node have the best performance. It is known from the mean value of MSE (Mean Square Error) validation for three training times of 0.003269. This ANN was further used to predict the thermal conductivity of four light brick samples. The predicted results for each of the AAC1, AAC2, AAC3 and AAC4 light brick samples were 0.243 W/m.K, respectively; 0.29 W/m.K; 0.32 W/m.K; and 0.32 W/m.K. Furthermore, ANN is used to determine the effect of silicon composition (Si), Calcium (Ca), to light brick thermal conductivity. ANN simulation results show that the thermal conductivity increases with increasing Si composition. Si content is allowed maximum of 26.57%, while the Ca content in the range 20.32% - 30.35%.
UR - http://www.scopus.com/inward/record.url?scp=85045637802&partnerID=8YFLogxK
U2 - 10.1088/1742-6596/997/1/012021
DO - 10.1088/1742-6596/997/1/012021
M3 - Conference article
AN - SCOPUS:85045637802
SN - 1742-6588
VL - 997
JO - Journal of Physics: Conference Series
JF - Journal of Physics: Conference Series
IS - 1
M1 - 012021
T2 - Seminar Nasional Fisika, SNF 2017
Y2 - 25 November 2017 through 25 November 2017
ER -