Abstract

The estimation of software effort is an essential and crucial activity for the software development life cycle. Software effort estimation is a challenge that often appears on the project of making a software. A poor estimate will produce result in a worse project management. Various software cost estimation model has been introduced to resolve this problem. Constructive Cost Model II (COCOMO II Model) create large extent most considerable and broadly used as model for cost estimation. To estimate the effort and the development time of a software project, COCOMO II model uses cost drivers, scale factors and line of code. However, the model is still lacking in terms of accuracy both in effort and development time estimation. In this study, we do investigate the influence of components and attributes to achieve new better accuracy improvement on COCOMO II model. And we introduced the use of Gaussian Membership Function (GMF) Fuzzy Logic and Multi-Objective Particle Swarm Optimization method (MOPSO) algorithms in calibrating and optimizing the COCOMO II model parameters. The proposed method is applied on Nasa93 dataset. The experiment result of proposed method able to reduce error down to 11.891% and 8.082% from the perspective of COCOMO II model. The method has achieved better results than those of previous researches and deals proficient with inexplicit data input and further improve reliability of the estimation method.

Original languageEnglish
Title of host publicationProceedings - 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics, EECSI 2017
EditorsHatib Rahmawan, Mochammad Facta, Munawar A. Riyadi, Deris Stiawan
PublisherInstitute of Advanced Engineering and Science
ISBN (Electronic)9781538605486
DOIs
Publication statusPublished - 22 Dec 2017
Event4th International Conference on Electrical Engineering, Computer Science and Informatics, EECSI 2017 - Yogyakarta, Indonesia
Duration: 19 Sept 201721 Sept 2017

Publication series

NameInternational Conference on Electrical Engineering, Computer Science and Informatics (EECSI)
Volume2017-December
ISSN (Print)2407-439X

Conference

Conference4th International Conference on Electrical Engineering, Computer Science and Informatics, EECSI 2017
Country/TerritoryIndonesia
CityYogyakarta
Period19/09/1721/09/17

Keywords

  • COCOMO II Model
  • Effort Estimation
  • Fuzzy
  • Multi-Objective PSO
  • Optimizaton
  • Time Development Estimation

Fingerprint

Dive into the research topics of 'Optimizing effort and time parameters of COCOMO II estimation using fuzzy multi-objective PSO'. Together they form a unique fingerprint.

Cite this