Partial Oxidation of Methane to Synthesize Gas over La1-xSr x Co0.8Fe0.2O3 ± δ Perovskite

Adilah Aliyatulmuna*, R. Y. Perry Burhan, Hamzah Fansuri, Irmina K. Murwani

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

2 Citations (Scopus)

Abstract

Catalytic partial oxidation of methane into syngas has been investigated over a series of La1-xSr x Co0.8Fe0.2O3 ± δ perovskite powder (x = 0.0; 0.1; 0.2; 0.3; 0.4) in a continuous flow reactor. Characterization studies of this powder by XRD showed that the incorporation of more Sr (x) increased the lattice parameter and transformed broad to single, sharp peak of La1-xSr x Co0.8Fe0.2O3. The performance of syngas formation from methane without the presence of molecular oxygen was determined by the ratio of H2/CO in the range of 750-950 °C. The performance correlated with thermogravimetric analysis. At a low temperature (750 °C), the CH4 conversions over La1-xSrxCo0.8Fe0.2O3 ± δ were affected by the crystallite size, whereas at a high temperature (950 °C), it was influenced by the mobility of oxygen ions coming from bulk. The weight loss in the range of 455-1100 °C due to the reduction of Fe3+ to Fe0 had a reverse effect on H2/CO ratio. Among all of the powder catalysts tested at 950 °C, LaCo0.8Fe0.2O3 ± δ had the largest Fe3+ reduction to Fe0 and the lowest ratio of H2/CO.

Original languageEnglish
Article number012040
JournalIOP Conference Series: Materials Science and Engineering
Volume515
Issue number1
DOIs
Publication statusPublished - 2019
EventInternational Conference on Condensed Matters and Advanced Materials 2018, IC2MAM 2018 - Malang, Indonesia
Duration: 5 Sept 2018 → …

Fingerprint

Dive into the research topics of 'Partial Oxidation of Methane to Synthesize Gas over La1-xSr x Co0.8Fe0.2O3 ± δ Perovskite'. Together they form a unique fingerprint.

Cite this