Personal Care Wastewater Treatment with Electro-coagulation and Electro-oxidation

Rachmad Ardhianto*, Arseto Yekti Bagastyo

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

3 Citations (Scopus)

Abstract

Personal care wastewater contains pharmaceuticals and personal care products (PPCPs). The compounds were in organic pollutants which have to be treated before water can be discharged. Electrochemical processes such as electro-coagulation and electro-oxidation were used to remove non-biodegradable in wastewater. Electro-coagulation as pretreatment using aluminum electrodes as anode and cathode. Electro-oxidation using Ti/Pt, and Ti/IrO2 as anode electrodes and variation of current 0,6 A, 0,7 A, 0,8 A and 1,0 A. Aluminum electrodes has effectiveness in removing COD, and TSS in electrocoagulation. Using aluminum electrodes remove COD, and TSS 76.1% (5.41 g) and 90.3% (6.10 g). Under initial pH, aluminum electrode does not cause a change in pH from initial pH (4.8-4.9). The removal efficiency of electrooxidation process using aluminum electrocoagulation effluent COD using Ti/Pt and Ti/IrO2 were 34,30% (1,55 g) and 39,71% (1,80 g). Increasing current when using Ti/IrO2 causes the COD removal rate to be more effective than using Ti/Pt. removal COD with 1.0 A gave the optimum COD removal were 34,30% (2,3 Ah/L; 1,55 g) with Ti/Pt, and 39,71% (2,3 Ah/L; 1,80 g) with Ti/IrO2 compared to 0,6 A (1,4 Ah/L), 0,7 A (1,6 Ah/L), and 0.8 A (1,9 Ah/L).

Original languageEnglish
Article number03008
JournalE3S Web of Conferences
Volume125
DOIs
Publication statusPublished - 28 Oct 2019
Event4th International Conference on Energy, Environment, Epidemiology and Information System, ICENIS 2019 - Semarang, Indonesia
Duration: 7 Aug 20198 Aug 2019

Keywords

  • Electro-Coagulation
  • Electro-Oxidation
  • Electrode
  • Personal Care Wastewater

Fingerprint

Dive into the research topics of 'Personal Care Wastewater Treatment with Electro-coagulation and Electro-oxidation'. Together they form a unique fingerprint.

Cite this