TY - JOUR
T1 - Ralstonia pickettii Enhance the DDT Biodegradation by Pleurotus eryngii
AU - Purnomo, Adi Setyo
AU - Maulianawati, Diana
AU - Kamei, Ichiro
N1 - Publisher Copyright:
Copyright© 2019 by The Korean Society for Microbiology and Biotechnology
PY - 2019
Y1 - 2019
N2 - DDT is a hydrophobic organic pollutant, which can be bio-accumulated in nature and have adverse consequences on the physical condition of humans and animals. This study investigated the relationship between the white-rot fungus Pleurotus eryngii and biosurfactant-producing bacterium Ralstonia pickettii associated with the degradation of DDT. The effects of R. pickettii on fungal development were examined using in vitro confrontation assay on a potato dextrose agar (PDA) medium. R. pickettii culture was added to the P. eryngii culture at 1, 3, 5, 7, and 10 ml (1 ml ≈ 1.44 × 1013 CFU). After 7 d incubation, about 43% of the initial DDT (12.5 µM) was degraded by the P. eryngii culture only. The augmentation of 7 ml of R. pickettii culture revealed a more highly optimized synergism with DDT degradation being approximately 78% and the ratio of optimization 1.06. According to the confrontational assay, R. pickettii promoted the growth of P. eryngii towards the bacterial colony, with no direct contact between the bacterial cells and mycelium (0.71 cm/day). DDD (1,1-dichloro-2,2-bis(4-chlorophenyl) ethane), DDE (1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene), and DDMU (1-chloro-2,2-bis(4-chlorophenyl) ethylene) were identified as metabolic products, indicating that the R. pickettii could enhance the DDT biodegradation by P. eryngii.
AB - DDT is a hydrophobic organic pollutant, which can be bio-accumulated in nature and have adverse consequences on the physical condition of humans and animals. This study investigated the relationship between the white-rot fungus Pleurotus eryngii and biosurfactant-producing bacterium Ralstonia pickettii associated with the degradation of DDT. The effects of R. pickettii on fungal development were examined using in vitro confrontation assay on a potato dextrose agar (PDA) medium. R. pickettii culture was added to the P. eryngii culture at 1, 3, 5, 7, and 10 ml (1 ml ≈ 1.44 × 1013 CFU). After 7 d incubation, about 43% of the initial DDT (12.5 µM) was degraded by the P. eryngii culture only. The augmentation of 7 ml of R. pickettii culture revealed a more highly optimized synergism with DDT degradation being approximately 78% and the ratio of optimization 1.06. According to the confrontational assay, R. pickettii promoted the growth of P. eryngii towards the bacterial colony, with no direct contact between the bacterial cells and mycelium (0.71 cm/day). DDD (1,1-dichloro-2,2-bis(4-chlorophenyl) ethane), DDE (1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene), and DDMU (1-chloro-2,2-bis(4-chlorophenyl) ethylene) were identified as metabolic products, indicating that the R. pickettii could enhance the DDT biodegradation by P. eryngii.
KW - Bacteria
KW - Biodegradation
KW - DDT
KW - Pleurotus eryngii
KW - Ralstonia pickettii
KW - White-rot fungi
UR - http://www.scopus.com/inward/record.url?scp=85072746661&partnerID=8YFLogxK
U2 - 10.4014/jmb.1906.06030
DO - 10.4014/jmb.1906.06030
M3 - Article
C2 - 31474097
AN - SCOPUS:85072746661
SN - 1017-7825
VL - 29
SP - 1424
EP - 1433
JO - Journal of Microbiology and Biotechnology
JF - Journal of Microbiology and Biotechnology
IS - 9
ER -