TY - JOUR
T1 - Recovery of rare earth elements from phosphogypsum using subcritical water extraction
AU - Lu, Si Bei
AU - Warmadewanthi,
AU - Liu, Jhy Chern
N1 - Publisher Copyright:
© 2023
PY - 2023/8
Y1 - 2023/8
N2 - Phosphogypsum (PG) is generated in massive amount in the production of fertilizer. It has been indicated that PG is a promising secondary source for rare earth elements (REEs). This study examined the leaching of REEs, including yttrium (Y), lanthanum (La), cerium (Ce) and neodymium (Nd) from PG utilizing subcritical water extraction (SWE). Hydrochloric acid (HCl) was selected as the leaching reagent, and the leaching efficiency increased with increasing HCl concentration and decreasing solid to liquid ratio (S/L). Complete leaching of REEs (100.36% of Y, 97.50% of La, 100.06% of Ce and 96.58% of Nd) was achieved under experimental conditions of 0.1 mol/L HCl, 10 g/L, 100 °C, initial pressure of 10 kg/cm2, and 5 min. The total energy consumption in SWE was 4.2 × 106 kJ/kg. Leaching efficiency of Y, La, and Nd slightly increased as temperature increased to 125 °C, and decreased when further increased to 150 °C. The behavior was due to solubility of anhydrite as affected by temperature and pressure under subcritical conditions, and the enhanced mass transfer. From comparisons, SWE could be an efficient and green technology for the recovery of REEs from PG.
AB - Phosphogypsum (PG) is generated in massive amount in the production of fertilizer. It has been indicated that PG is a promising secondary source for rare earth elements (REEs). This study examined the leaching of REEs, including yttrium (Y), lanthanum (La), cerium (Ce) and neodymium (Nd) from PG utilizing subcritical water extraction (SWE). Hydrochloric acid (HCl) was selected as the leaching reagent, and the leaching efficiency increased with increasing HCl concentration and decreasing solid to liquid ratio (S/L). Complete leaching of REEs (100.36% of Y, 97.50% of La, 100.06% of Ce and 96.58% of Nd) was achieved under experimental conditions of 0.1 mol/L HCl, 10 g/L, 100 °C, initial pressure of 10 kg/cm2, and 5 min. The total energy consumption in SWE was 4.2 × 106 kJ/kg. Leaching efficiency of Y, La, and Nd slightly increased as temperature increased to 125 °C, and decreased when further increased to 150 °C. The behavior was due to solubility of anhydrite as affected by temperature and pressure under subcritical conditions, and the enhanced mass transfer. From comparisons, SWE could be an efficient and green technology for the recovery of REEs from PG.
KW - Leaching
KW - Phosphogypsum
KW - Rare earth elements
KW - Recovery
KW - Subcritical water extraction
KW - Waste
UR - http://www.scopus.com/inward/record.url?scp=85159609725&partnerID=8YFLogxK
U2 - 10.1016/j.cep.2023.109433
DO - 10.1016/j.cep.2023.109433
M3 - Article
AN - SCOPUS:85159609725
SN - 0255-2701
VL - 190
JO - Chemical Engineering and Processing - Process Intensification
JF - Chemical Engineering and Processing - Process Intensification
M1 - 109433
ER -