Reduction of Marine Bivalve Mollusc (Anadara granosa) using Impressed Current Anti Fouling (ICAF) to Prevent the Biofouling

Herman Pratikno*, Harmin Sulistiyaning Titah, Handayanu, Moontera Priyanto

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

Abstract

Fouling is an adverse problem for ship. Fouling itself is some kind of marine biota like shells, mussels, or barnacles, which grow and live on the surface of ship's hull or inside the ship's piping system. Many methods have been applied to prevent fouling. Impressed Current Anti Fouling (ICAF) was developed and applied as an alternative in mitigation of fouling. The aim of the research was to determine the effects of electrical current, duration time, salinity on Anadara granosa death in simple ICAF system. The simple ICAF reactor was operated in electric current of 1.5 A, and duration time (1,3,5,7 dan 9 h), variations of salinity (33 ‰, 35‰ and 37‰) and the size of shell (1-2 cm and 2-3 cm). Steel of AH36 has a role as a cathode, meanwhile pure copper (Cu) was an anode. The death of Anadara granosa was conducted using direct observation. The direct observation was carried out by opening the shells one by one. The death of mollusc can be confirmed by looking the response from the mollusc. If the mollusc showed no response when it was pierced, it indicated that the mollusc was dead. Besides that, there was white slime inside the mollusc. Based on the results, the death of Anadara granosa with shell size of 2-3 cm showed the highest percentage of 90% at electrical current of 1.5 A, duration time of 9 h, and salinity of 37 ‰. Meanwhile the smallest percentage of Anadara granosa death reached 10% at electrical current of 1.5 A, duration time of 7 h, and salinity of 33 ‰ for shell size of 1-2 cm. In conclusion, duration time and salinity were higher so that the death of Anadara granosa was higher too. Besides that, the small size of Anadara granosa was more resistant.

Original languageEnglish
Article number05005
JournalE3S Web of Conferences
Volume202
DOIs
Publication statusPublished - 10 Nov 2020
Event5th International Conference on Energy, Environmental and Information System, ICENIS 2020 - Semarang, Indonesia
Duration: 12 Aug 202013 Aug 2020

Keywords

  • Biofouling
  • Duration time
  • Electrical current
  • Marine bivalve
  • Salinity
  • Simple ICAF system

Fingerprint

Dive into the research topics of 'Reduction of Marine Bivalve Mollusc (Anadara granosa) using Impressed Current Anti Fouling (ICAF) to Prevent the Biofouling'. Together they form a unique fingerprint.

Cite this