Relaxation-Based Radiometric Normalization for Multitemporal Cross-Sensor Satellite Images

Gabriel Yedaya Immanuel Ryadi, Muhammad Aldila Syariz, Chao Hung Lin*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Multitemporal cross-sensor imagery is fundamental for the monitoring of the Earth’s surface over time. However, these data often lack visual consistency because of variations in the atmospheric and surface conditions, making it challenging to compare and analyze images. Various image-normalization methods have been proposed to address this issue, such as histogram matching and linear regression using iteratively reweighted multivariate alteration detection (IR-MAD). However, these methods have limitations in their ability to maintain important features and their requirement of reference images, which may not be available or may not adequately represent the target images. To overcome these limitations, a relaxation-based algorithm for satellite-image normalization is proposed. The algorithm iteratively adjusts the radiometric values of images by updating the normalization parameters (slope (α) and intercept (β)) until a desired level of consistency is reached. This method was tested on multitemporal cross-sensor-image datasets and showed significant improvements in radiometric consistency compared to other methods. The proposed relaxation algorithm outperformed IR-MAD and the original images in reducing radiometric inconsistencies, maintaining important features, and improving the accuracy (MAE = 2.3; RMSE = 2.8) and consistency of the surface-reflectance values (R2 = 87.56%; Euclidean distance = 2.11; spectral angle mapper = 12.60).

Original languageEnglish
Article number5150
JournalSensors
Volume23
Issue number11
DOIs
Publication statusPublished - Jun 2023

Keywords

  • IR-MAD
  • image normalization
  • multitemporal cross-sensor image
  • relaxation
  • visual consistency

Fingerprint

Dive into the research topics of 'Relaxation-Based Radiometric Normalization for Multitemporal Cross-Sensor Satellite Images'. Together they form a unique fingerprint.

Cite this