Simplified Method for Nonlinear Seismic Response Analysis of Corroded Pile-Supported Wharf

Afif Navir Refani*, Takashi Nagao

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Fiber-based finite element analysis (FB-FEA) has been widely recognized for its ability to reproduce experimental results and is also a reliable method for evaluating the nonlinear seismic response of pile-supported wharves (PSWs). Design practice often employs frame analysis (FA) due to its easy implementation. To precisely reproduce the nonlinear seismic response of PSW using FA, it is necessary to configure mechanical properties such as the hinge property correctly. However, it is unclear whether the hinge properties proposed in previous studies can be applied to PSWs with spun piles. In this study, a novel FA method was developed to investigate the nonlinear seismic response of PSWs with corroded spun piles considering PC bar area reduction, deteriorated material properties, the bending stiffness reduction factor, and the moment–curvature relationship of the spun pile. The nonlinear seismic response of corroded PSWs was determined by performing pushover analysis using three methods: FA using the method of the previous study (FA-1), the proposed FA method (FA-2), and FB-FEA. As regards PSW foundations, vertical pile and batter pile configurations were considered. The pushover analysis results were compared in terms of several parameters, such as the natural period, plastic hinge formation, and load capacity of the corroded PSWs. The FA-2 results agreed very well with the FB-FEA results, while the FA-1 results were less precise with respect to the natural periods and load capacities of corroded PSWs. The results indicated that the bending stiffness reduction factor, moment–curvature relationship, and axial load–bending moment (P–M) capacity of the corroded spun piles should be appropriately defined. Corrosion had greater negative impacts on the compressive axial load and bending moment capacities of the spun pile than on its tensile axial load capacity.

Original languageEnglish
Article number10936
JournalApplied Sciences (Switzerland)
Volume13
Issue number19
DOIs
Publication statusPublished - Oct 2023

Keywords

  • corrosion
  • fiber-based finite element analysis
  • frame analysis
  • pile-supported wharf
  • pushover analysis
  • spun pile

Fingerprint

Dive into the research topics of 'Simplified Method for Nonlinear Seismic Response Analysis of Corroded Pile-Supported Wharf'. Together they form a unique fingerprint.

Cite this