Abstract

Extractive fermentation is continuous fermentation method which is believed to be able to substitute conventional fermentation method (batch). The recovery system and ethanol refinery will be easier. Continuous process of fermentation will make the productivity increase although the unconverted sugar in continuous fermentation is still in high concentration. In order to make this process more efficient, the recycle process was used. Increasing recycle flow will enhance the probability of sugar to be re-fermented. However, this will make ethanol enter fermentation column. As a result, the accumulated ethanol will inhibit the growth of microorganism. This research aims to find optimum conditions of solvent to broth ratio (S:B) and recycle flow to fresh feed ratio in order to produce the best yield and productivity. This study employed optimization by Hooke Jeeves method using Matlab 7.8 software. The result indicated that optimum condition occured in S: B=2.615 and R: F=1.495 with yield = 50.2439 %.

Original languageEnglish
Title of host publicationInternational Seminar on Fundamental and Application of Chemical Engineering 2016, ISFAChE 2016
Subtitle of host publicationProceedings of the 3rd International Seminar on Fundamental and Application of Chemical Engineering 2016
Editors Widiyastuti, Fadlilatul Taufany, Siti Nurkhamidah
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735415102
DOIs
Publication statusPublished - 24 May 2017
Event3rd International Seminar on Fundamental and Application of Chemical Engineering 2016, ISFAChE 2016 - East Java, Indonesia
Duration: 1 Nov 20162 Nov 2016

Publication series

NameAIP Conference Proceedings
Volume1840
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference3rd International Seminar on Fundamental and Application of Chemical Engineering 2016, ISFAChE 2016
Country/TerritoryIndonesia
CityEast Java
Period1/11/162/11/16

Fingerprint

Dive into the research topics of 'Simulation and optimization of continuous extractive fermentation with recycle system'. Together they form a unique fingerprint.

Cite this