State-Dependent Model Based on Singular Spectrum Analysis Vector for Modeling Structural Breaks: Forecasting Indonesian Export

Yoga Sasmita, Heri Kuswanto*, Dedy Dwi Prastyo

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Standard time-series modeling requires the stability of model parameters over time. The instability of model parameters is often caused by structural breaks, leading to the formation of nonlinear models. A state-dependent model (SDM) is a more general and flexible scheme in nonlinear modeling. On the other hand, time-series data often exhibit multiple frequency components, such as trends, seasonality, cycles, and noise. These frequency components can be optimized in forecasting using Singular Spectrum Analysis (SSA). Furthermore, the two most widely used approaches in SSA are Linear Recurrent Formula (SSAR) and Vector (SSAV). SSAV has better accuracy and robustness than SSAR, especially in handling structural breaks. Therefore, this research proposes modeling the SSAV coefficient with an SDM approach to take structural breaks called SDM-SSAV. SDM recursively updates the SSAV coefficient to adapt over time and between states using an Extended Kalman Filter (EKF). Empirical results with Indonesian Export data and simulation studies show that the accuracy of SDM-SSAV outperforms SSAR, SSAV, SDM-SSAR, hybrid ARIMA-LSTM, and VARI.

Original languageEnglish
Pages (from-to)152-169
Number of pages18
JournalForecasting
Volume6
Issue number1
DOIs
Publication statusPublished - Mar 2024

Keywords

  • Indonesian export
  • singular spectrum analysis vector
  • state-dependent model
  • structural breaks

Fingerprint

Dive into the research topics of 'State-Dependent Model Based on Singular Spectrum Analysis Vector for Modeling Structural Breaks: Forecasting Indonesian Export'. Together they form a unique fingerprint.

Cite this