Subgame perfect equilibrium analysis for jamming attacks on resilient graphs

Yurid Nugraha, Tomohisa Hayakawa, Ahmet Cetinkaya, Hideaki Ishii, Quanyan Zhu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Citations (Scopus)

Abstract

A cyber security problem is considered in a networked system formulated as a resilient graph problem based on a game theoretic approach. The connectivity of the underlying graph of the network system is reduced by an attacker who removes some of the edges whereas the defender attempts to recover them. Both players are subject to energy constraints so that their actions are restricted and cannot be performed continuously. We provide a subgame perfect equilibrium analysis and fully characterize the optimal strategies for the attacker and the defender in terms of edge connectivity and the number of connected components of the graph. The resilient graph game is then applied to the multiagent consensus problem. We study how the attacks and the recovery on the edges affect the consensus process.

Original languageEnglish
Title of host publication2019 American Control Conference, ACC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2060-2065
Number of pages6
ISBN (Electronic)9781538679265
DOIs
Publication statusPublished - Jul 2019
Externally publishedYes
Event2019 American Control Conference, ACC 2019 - Philadelphia, United States
Duration: 10 Jul 201912 Jul 2019

Publication series

NameProceedings of the American Control Conference
Volume2019-July
ISSN (Print)0743-1619

Conference

Conference2019 American Control Conference, ACC 2019
Country/TerritoryUnited States
CityPhiladelphia
Period10/07/1912/07/19

Fingerprint

Dive into the research topics of 'Subgame perfect equilibrium analysis for jamming attacks on resilient graphs'. Together they form a unique fingerprint.

Cite this