TY - JOUR
T1 - Synthesis and characterization of mesoporous silica nanoparticles (MSNp) MCM 41 from natural waste rice husk
AU - Purnawira, B.
AU - Purwaningsih, H.
AU - Ervianto, Y.
AU - Pratiwi, V. M.
AU - Susanti, D.
AU - Rochiem, R.
AU - Purniawan, A.
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2019/7/3
Y1 - 2019/7/3
N2 - Rice husk contains silica up to 86.9-97.3%, it potentially as precursor silica in the synthesis process of mesoporous silica MCM 41. First, use acid leaching as pre-treatment of rice husk extraction, followed by heat treatment at 600°C in the furnace, continued with sol-gel process to get amorphous silica. Mesoporous silica was synthesizing using CTAB as surfactant to assist porous of silica MCM 41 (CTAB-templated silica). CTAB concentration were 1, 1.25 and 1.5%. Mesoporous silica nanoparticle MCM 41 synthesized by sol-gel method, followed by hydrothermal and reflux methanol + HCl. X-ray diffraction pattern showed that silica has amorphous liked-structure, indicated by peak broadening at 2-theta around 22-24°. Fourier Transformed Infrared-FTIR shown functional group of Si-O, Si-O-H, Si-O-Si, -OH, Si-H, and Si-OH bond have been identified. Scanning electron microscope (SEM) shown particle agglomeration and particle sizes range between 311-482 nm. The desorption adsorption nitrogen analysis (BET analysis) showed that surface area and pore diameter at 1%, 1.25% and 1.5% CTAB have surface area 552.429 m2/g, 768.947 m2/g and 705.501 m2/g. In hence pore diameters are 3.4178 nm, 3.0517 nm and 3.4098 nm respectively.
AB - Rice husk contains silica up to 86.9-97.3%, it potentially as precursor silica in the synthesis process of mesoporous silica MCM 41. First, use acid leaching as pre-treatment of rice husk extraction, followed by heat treatment at 600°C in the furnace, continued with sol-gel process to get amorphous silica. Mesoporous silica was synthesizing using CTAB as surfactant to assist porous of silica MCM 41 (CTAB-templated silica). CTAB concentration were 1, 1.25 and 1.5%. Mesoporous silica nanoparticle MCM 41 synthesized by sol-gel method, followed by hydrothermal and reflux methanol + HCl. X-ray diffraction pattern showed that silica has amorphous liked-structure, indicated by peak broadening at 2-theta around 22-24°. Fourier Transformed Infrared-FTIR shown functional group of Si-O, Si-O-H, Si-O-Si, -OH, Si-H, and Si-OH bond have been identified. Scanning electron microscope (SEM) shown particle agglomeration and particle sizes range between 311-482 nm. The desorption adsorption nitrogen analysis (BET analysis) showed that surface area and pore diameter at 1%, 1.25% and 1.5% CTAB have surface area 552.429 m2/g, 768.947 m2/g and 705.501 m2/g. In hence pore diameters are 3.4178 nm, 3.0517 nm and 3.4098 nm respectively.
UR - http://www.scopus.com/inward/record.url?scp=85068989979&partnerID=8YFLogxK
U2 - 10.1088/1757-899X/541/1/012018
DO - 10.1088/1757-899X/541/1/012018
M3 - Conference article
AN - SCOPUS:85068989979
SN - 1757-8981
VL - 541
JO - IOP Conference Series: Materials Science and Engineering
JF - IOP Conference Series: Materials Science and Engineering
IS - 1
M1 - 012018
T2 - 2nd International Seminar on Metallurgy and Materials, ISMM 2018
Y2 - 25 September 2018 through 26 September 2018
ER -