Abstract

Zirconium oxide (zirconia, ZrO2) is the most common material used for electrolyte of solid oxide fuel cells (SOFCs). Zirconia has attracted attention for applications in optical coatings, buffer layers for growing superconductors, thermal-shield, corrosion resistant coatings, ionic conductors, and oxygen sensors, and for potential applications including transparent optical devices and electrochemical capacitor electrodes, fuel cells, catalysts, and advanced ceramics. In this work, zirconia particles were synthesized from ZrCl4 precursor with hydrothermal treatment in a batch reactor. Hydrothermal treatment may allow obtaining nanoparticles and sintered materials with controlled chemical and structural characteristics. Hydrothermal treatment was carried out at temperatures of 150 - 200°C with precursor concentration of 0.1 - 0.5 M. Zirconia particles obtained from this treatment were analyzed by using SEM, PSD and XRD to characterize the morphology, particle size distribution, and crystallinity, respectively. Based on the analysis, the size of zirconia particles were around 200 nm and it became smaller with decreasing precursor concentration. The increasing temperature caused the particles formed having uniform size. Zirconia particles formed by hydrothermal treatment were monoclinic, tetragonal and cubic crystal.

Original languageEnglish
Title of host publication5th Nanoscience and Nanotechnology Symposium, NNS 2013
PublisherAmerican Institute of Physics Inc.
Pages166-172
Number of pages7
ISBN (Print)9780735412187
DOIs
Publication statusPublished - 2014
Event5th Nanoscience and Nanotechnology Symposium, NNS 2013 - Surabaya, Indonesia
Duration: 23 Oct 201325 Oct 2013

Publication series

NameAIP Conference Proceedings
Volume1586
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference5th Nanoscience and Nanotechnology Symposium, NNS 2013
Country/TerritoryIndonesia
CitySurabaya
Period23/10/1325/10/13

Keywords

  • Hydrothermal
  • Nanoparticles
  • Synthesis
  • Zirconia

Fingerprint

Dive into the research topics of 'Synthesis of ZrO2 nanoparticles by hydrothermal treatment'. Together they form a unique fingerprint.

Cite this