TY - JOUR
T1 - The Influence of Chitosan Concentration on Synthesis of Hydroxyapatite Scaffold on Crystallinity and Surface Morphology
AU - Yudyanto,
AU - Hartatiek,
AU - Prasasti, R. W.
AU - Hariyanto, Y. A.
AU - Hidayat, N.
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2018/6/12
Y1 - 2018/6/12
N2 - Hydroxyapatite (HA) is a bioceramic material having a chemical formula (Ca10(PO4)6(OH)2) similar to the chemical structure of bone and hard tissue in humans. Recently, HA-scaffold has been intensively developed by many researchers due to its potential application in dealing with tissue injured. The implantation of HA-scaffold into bone defect aims to help and stimulate the growth of new bone tissue. Crystallinity and microstructure are properties that need to be considered to synthesis HA scaffold. Although, HA is biocompatible and osteoconductive but low biodegradable, to solve these problems added chitosan. Chitosan is a biopolymeric material with specific properties, in terms of biocompatible, non-toxic, osteoconductive, biodegradable, and not carcinogenc. In addition, a natural polymeric chitosan has similarities with the extracellular matrix, in terms of good biological performance and inherent cellular interactions. In this study, HA-scaffold was synthesized using Ca(OH)2 as the raw material of natural calcite mineral, H3PO4, and a solid polyurethane polymer (sponge) as forming of pores by sol-gel method. The addition of chitosan concentration of 0 %, 2 % and 3 % in hydroxyapatite scaffold evaluated its influences on crystallinity and surface morphology. The phase, crystallinity and crystal size are evaluated by XRD. Functional groups in HA scaffold and HA compounds were evaluated with FTIR. The results showed that HA has Ca/P ratio of 1.64. The addition of chitosan concentration caused the decrease of crystallinity and increased the pore size. Meanwhile the crystal sizes were obtained: 49.99 nm (HA), 54.37 nm (HA-scaffold without chitosan), 54.98 nm (HA-scaffold with 2% chitosan), and 40.44 nm (HA-scaffold with 3 % chitosan).
AB - Hydroxyapatite (HA) is a bioceramic material having a chemical formula (Ca10(PO4)6(OH)2) similar to the chemical structure of bone and hard tissue in humans. Recently, HA-scaffold has been intensively developed by many researchers due to its potential application in dealing with tissue injured. The implantation of HA-scaffold into bone defect aims to help and stimulate the growth of new bone tissue. Crystallinity and microstructure are properties that need to be considered to synthesis HA scaffold. Although, HA is biocompatible and osteoconductive but low biodegradable, to solve these problems added chitosan. Chitosan is a biopolymeric material with specific properties, in terms of biocompatible, non-toxic, osteoconductive, biodegradable, and not carcinogenc. In addition, a natural polymeric chitosan has similarities with the extracellular matrix, in terms of good biological performance and inherent cellular interactions. In this study, HA-scaffold was synthesized using Ca(OH)2 as the raw material of natural calcite mineral, H3PO4, and a solid polyurethane polymer (sponge) as forming of pores by sol-gel method. The addition of chitosan concentration of 0 %, 2 % and 3 % in hydroxyapatite scaffold evaluated its influences on crystallinity and surface morphology. The phase, crystallinity and crystal size are evaluated by XRD. Functional groups in HA scaffold and HA compounds were evaluated with FTIR. The results showed that HA has Ca/P ratio of 1.64. The addition of chitosan concentration caused the decrease of crystallinity and increased the pore size. Meanwhile the crystal sizes were obtained: 49.99 nm (HA), 54.37 nm (HA-scaffold without chitosan), 54.98 nm (HA-scaffold with 2% chitosan), and 40.44 nm (HA-scaffold with 3 % chitosan).
KW - Chitosan
KW - HA scaffold
KW - and surface morphology
KW - crystallinity
UR - http://www.scopus.com/inward/record.url?scp=85049365031&partnerID=8YFLogxK
U2 - 10.1088/1757-899X/367/1/012024
DO - 10.1088/1757-899X/367/1/012024
M3 - Conference article
AN - SCOPUS:85049365031
SN - 1757-8981
VL - 367
JO - IOP Conference Series: Materials Science and Engineering
JF - IOP Conference Series: Materials Science and Engineering
IS - 1
M1 - 012024
T2 - 5th International Conference on Advanced Materials Sciences and Technology, ICAMST 2017
Y2 - 19 September 2017 through 20 September 2017
ER -