The influence of electron discharge and magnetic field on calcium carbonate (CaCO3) precipitation

Triswantoro Putro*, Endarko

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

The influences of electron discharge and magnetic field on calcium carbonate (CaCO3) precipitation in water have been successfully investigated. The study used three pairs of magnetic field 0.1 T whilst the electron discharge was generated from television flyback transformer type BW00607 and stainless steel SUS 304 as an electrode. The water sample with an initial condition of 230 mg/L placed in the reactor with flow rate 375 mL/minutes, result showed that the electron discharge can be reduced contain of calcium carbonate the water sample around 17.39% within 2 hours. Meanwhile for the same long period of treatment and flow rate, around 56.69% from initial condition of 520 mg/L of calcium carbonate in the water sample can be achieved by three pairs of magnetic field 0.1 T. When the combination of three pairs of magnetic field 0.1 T and the electron discharge used for treatment, the result showed that the combination of electron discharge and magnetic field methods can be used to precipitate calcium carbonate in the water sample 300 mg/L around 76.66% for 2 hours of treatment. The study then investigated the influence of the polar position of the magnetic field on calcium carbonate precipitation. Two positions of magnetic field were tested namely the system with alternated polar magnetics and the system without inversion of the polar magnetics. The influence of the polar position showed that the percentage reduction in levels of calcium carbonate in the water sample (360 mg/L) is significant different. Result showed that the system without inversion of the polar magnetics is generally lower than the system with alternated polar magnetics, with reduction level at 30.55 and 57.69%, respectively.

Original languageEnglish
Title of host publication3rd International Conference on Advanced Materials Science and Technology, ICAMST 2015
EditorsRisa Suryana, Khairurrijal, Heru Susanto, Markusdiantoro, Sutikno, Kuwat Triyana
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735413726
DOIs
Publication statusPublished - 19 Apr 2016
Event3rd International Conference on Advanced Materials Science and Technology, ICAMST 2015 - Semarang, Indonesia
Duration: 6 Oct 20157 Oct 2015

Publication series

NameAIP Conference Proceedings
Volume1725
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference3rd International Conference on Advanced Materials Science and Technology, ICAMST 2015
Country/TerritoryIndonesia
CitySemarang
Period6/10/157/10/15

Fingerprint

Dive into the research topics of 'The influence of electron discharge and magnetic field on calcium carbonate (CaCO3) precipitation'. Together they form a unique fingerprint.

Cite this