TY - JOUR
T1 - The influence of fake accounts on sentiment analysis related to COVID-19 in Indonesia
AU - Pratama, Rivanda Putra
AU - Tjahyanto, Aris
N1 - Publisher Copyright:
© 2021 The Authors. Published by Elsevier B.V.
PY - 2021
Y1 - 2021
N2 - Cases of the spread of COVID-19 that continue to increase in Indonesia have made the level of public satisfaction with the government in dealing with this virus fairly low. One way to measure the level of community satisfaction is by analyzing social media. Sentiment analysis can be used to analyze feedback from the public. Research related to sentiment analysis has been mostly carried out, but so far, it has focused more on opinions contained in sentences and comments and has not considered the subject of the account that posted it. On the other hand, the use of fake accounts or bots on social media is becoming more and more prevalent, so that the credibility of opinion makers is reduced. Based on these problems, this research conducted several experiments related to sentiment analysis using a machine learning approach and fake account categories to see the influence of fake accounts on sentiment analysis. The data used in this research were taken from social media Twitter. The results showed that there was an influence from fake accounts that can reduce the performance of sentiment classification. The experimental results of the two algorithms also prove that the Support Vector Machine algorithm has a better performance than the Naïve-Bayes algorithm for this case with the highest Accuracy value of 80.6%. In addition, the results of the sentiment visualization showed that there was an influence from fake accounts which actually leads to positive sentiment although it is not significant.
AB - Cases of the spread of COVID-19 that continue to increase in Indonesia have made the level of public satisfaction with the government in dealing with this virus fairly low. One way to measure the level of community satisfaction is by analyzing social media. Sentiment analysis can be used to analyze feedback from the public. Research related to sentiment analysis has been mostly carried out, but so far, it has focused more on opinions contained in sentences and comments and has not considered the subject of the account that posted it. On the other hand, the use of fake accounts or bots on social media is becoming more and more prevalent, so that the credibility of opinion makers is reduced. Based on these problems, this research conducted several experiments related to sentiment analysis using a machine learning approach and fake account categories to see the influence of fake accounts on sentiment analysis. The data used in this research were taken from social media Twitter. The results showed that there was an influence from fake accounts that can reduce the performance of sentiment classification. The experimental results of the two algorithms also prove that the Support Vector Machine algorithm has a better performance than the Naïve-Bayes algorithm for this case with the highest Accuracy value of 80.6%. In addition, the results of the sentiment visualization showed that there was an influence from fake accounts which actually leads to positive sentiment although it is not significant.
KW - Fake account
KW - Machine learning
KW - Sentiment analysis
KW - Twitter
UR - http://www.scopus.com/inward/record.url?scp=85123766549&partnerID=8YFLogxK
U2 - 10.1016/j.procs.2021.12.128
DO - 10.1016/j.procs.2021.12.128
M3 - Conference article
AN - SCOPUS:85123766549
SN - 1877-0509
VL - 197
SP - 143
EP - 150
JO - Procedia Computer Science
JF - Procedia Computer Science
T2 - 6th Information Systems International Conference, ISICO 2021
Y2 - 7 August 2021 through 8 August 2021
ER -