The Influence of the Tool Concave Shoulder Angle on Heat Generation in the Stir Friction Welding Process with AA6061-T651 Materials

Mulyadi*, Agus Sigit Pramono, Arif Wahjudi, I. Made Londen Batan, Niko Adrisenna Pontjonoto

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

1 Citation (Scopus)

Abstract

This study aims to determine the effect of the concave shoulder angle of the FSW tool on heat generation rate and temperature simulation results. The FSW tool used in this study is the FSW tool with straight cylindrical geometry, tapered cylinder, hexagonal, and tapered square. Calculation of heat generation rate is carried out for all FSW tools, then the optimal one is selected and then simulated. The process of calculating heat generation rate and simulation using the Taguchi method has 4 factors, each of which has 4 levels. The factors used in this study are tool rotation speed, welding speed, concave shoulder angle, and tool tilt angle with temperature response. on the weld joint. The results of this study indicate that the influence of the concave shoulder angle on the heat generation rate and temperature simulation is very influential. Based on the results of the heat generation rate calculation, the FSW tool with hexagonal pin geometry was chosen to be simulated. The simulation results show that the selected process parameters are tool rotation speed of 1208 rpm, welding speed of 90 mm/s, concave shoulder angle of 5°, and tool tilt angle of 3°. From the selected parameters, it was experimented with to produce a fairly good connection even though there were still surface defects.

Original languageEnglish
Title of host publicationKey Engineering Materials
PublisherTrans Tech Publications Ltd
Pages55-61
Number of pages7
DOIs
Publication statusPublished - 2023

Publication series

NameKey Engineering Materials
Volume943
ISSN (Print)1013-9826
ISSN (Electronic)1662-9795

Keywords

  • concave shoulder angle
  • friction stir welding
  • heat generation rate

Fingerprint

Dive into the research topics of 'The Influence of the Tool Concave Shoulder Angle on Heat Generation in the Stir Friction Welding Process with AA6061-T651 Materials'. Together they form a unique fingerprint.

Cite this