TY - JOUR
T1 - The partition dimension of a complete multipartite graph, a special caterpillar and a windmill
AU - Darmaji,
AU - Uttunggadewa, S.
AU - Simanjuntak, R.
AU - Baskoro, E. T.
PY - 2009/11
Y1 - 2009/11
N2 - In this paper, we determine the partition dimension of a complete multipartite graph Kn1,n2,... .nr, namely pd(Kn1,n2,... .nr,) isr + n- 1 if ni = n for 1 ≤ i ≤ r and pd(Kn1,n2,... .nr) is r + n - 2 for n = n1 ≥ n2 ≥ ≥ nr. We also show that the partition dimension of caterpillar graph C nm is m for n ≤ m and m + 1 for n > m, and the partition dimension of windmill graph W2m is k, where k is the smallest integer such that (k/2) ≥ m.
AB - In this paper, we determine the partition dimension of a complete multipartite graph Kn1,n2,... .nr, namely pd(Kn1,n2,... .nr,) isr + n- 1 if ni = n for 1 ≤ i ≤ r and pd(Kn1,n2,... .nr) is r + n - 2 for n = n1 ≥ n2 ≥ ≥ nr. We also show that the partition dimension of caterpillar graph C nm is m for n ≤ m and m + 1 for n > m, and the partition dimension of windmill graph W2m is k, where k is the smallest integer such that (k/2) ≥ m.
KW - Caterpillar
KW - Complete multipartite graph
KW - Partition dimension
KW - Resolving partition
KW - Windmill graph
UR - http://www.scopus.com/inward/record.url?scp=78651579831&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:78651579831
SN - 0835-3026
VL - 71
SP - 209
EP - 215
JO - Journal of Combinatorial Mathematics and Combinatorial Computing
JF - Journal of Combinatorial Mathematics and Combinatorial Computing
ER -