TY - JOUR

T1 - The Results Comparison of Numerical and Analytical Methods for Electric Potential on Rectangular Pipes

AU - Maulana, Z. S.

AU - Rizaldi, M. F.R.

AU - Bustomi, M. A.

N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.

PY - 2023

Y1 - 2023

N2 - Two methods can be used to solve the problem of electric potential distribution in a rectangular pipe: numerical and analytical. The analytical solution is obtained using the Laplace equation and the given boundary conditions to complete the solution in the form of a linear combination of sinusoidal and hyperbolic functions. While the numerical solution is obtained using the finite difference method in the Python programming language. The comparison between the analytical and numerical solutions shows that the two have a good fit. This can be seen from the graph of the electric potential distribution in the rectangular pipe produced by the two methods. Numerical solutions obtained using the finite difference method in the Python programming language provide accurate and efficient results in solving the problem of the electric potential distribution in rectangular pipes. The use of the first four terms in the analytical method and the selection of 4 observation points on the pipe, namely points A (3.33, 1.67), B (3.33, 3.34), C (6.67, 1.67), and D (6.67, 3.34) produces a difference in the electric potential value between analytical and numerical methods each point is 35.91%, 51.96%, 51.96%, and 35.91%. The value difference between analytical and numerical methods will be smaller if more terms are taken in the analytical calculation, and more observation points are considered on the pipe.

AB - Two methods can be used to solve the problem of electric potential distribution in a rectangular pipe: numerical and analytical. The analytical solution is obtained using the Laplace equation and the given boundary conditions to complete the solution in the form of a linear combination of sinusoidal and hyperbolic functions. While the numerical solution is obtained using the finite difference method in the Python programming language. The comparison between the analytical and numerical solutions shows that the two have a good fit. This can be seen from the graph of the electric potential distribution in the rectangular pipe produced by the two methods. Numerical solutions obtained using the finite difference method in the Python programming language provide accurate and efficient results in solving the problem of the electric potential distribution in rectangular pipes. The use of the first four terms in the analytical method and the selection of 4 observation points on the pipe, namely points A (3.33, 1.67), B (3.33, 3.34), C (6.67, 1.67), and D (6.67, 3.34) produces a difference in the electric potential value between analytical and numerical methods each point is 35.91%, 51.96%, 51.96%, and 35.91%. The value difference between analytical and numerical methods will be smaller if more terms are taken in the analytical calculation, and more observation points are considered on the pipe.

UR - http://www.scopus.com/inward/record.url?scp=85179627801&partnerID=8YFLogxK

U2 - 10.1088/1742-6596/2623/1/012036

DO - 10.1088/1742-6596/2623/1/012036

M3 - Conference article

AN - SCOPUS:85179627801

SN - 1742-6588

VL - 2623

JO - Journal of Physics: Conference Series

JF - Journal of Physics: Conference Series

IS - 1

M1 - 012036

T2 - 2023 National Physics Seminar, SNF 2023

Y2 - 26 August 2023

ER -