The Role of Boron-Doped Diamond and Platinum Anodes in the Three-Compartment Electrochemical Pretreatment of Stabilized Landfill Leachate – Response Surface Methodological Approach

Arseto Yekti Bagastyo*, Anita Dwi Anggrainy, Badriyah Rosyidah

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Stabilized landfill leachate contains high fractions of refractory organics that cannot be effectively degraded by simple biological or physicochemical treatment. Thus, primary treatment was required to improve biodegradability and enhance treatment efficiency. This study investigated the role of Boron-Doped Diamond (BDD) and platinum (Pt) anodes at a current density of 29.2 and 33.3 mA/cm2 in the electrochemical processes for the pretreatment of stabilized leachate. A three-compartment electrochemical reactor was used in the research to enhance the removal of ionic pollutants. The pollutants were measured as total dissolved solids (TDS), chemical oxygen demand (COD), ammonium-nitrogen (NH4–N), and nitrite (NO2–). The reactor performance was then analyzed using a regular two-level factorial design. The results showed that the electrochemical process effectively removed organic and inorganic pollutants. The highest removal was obtained at 33.3 mA/cm2 using the BDD, measured around 48, 82, 60, and 79% for TDS, COD, NH4–N, and NO2–, respectively. Meanwhile, the specific energy consumption for COD removal was estimated to reach 1.5 and 1.55 Wh/g for BDD and Pt, respectively. These results imply that the type of anodes and applied current densities significantly influence the treatment efficiency.

Original languageEnglish
Pages (from-to)50-60
Number of pages11
JournalJournal of Ecological Engineering
Volume23
Issue number12
DOIs
Publication statusPublished - 2022

Keywords

  • Boron-doped diamond
  • Electrochemical process
  • Leachate pretreatment
  • Platinum
  • Response surface methodology

Fingerprint

Dive into the research topics of 'The Role of Boron-Doped Diamond and Platinum Anodes in the Three-Compartment Electrochemical Pretreatment of Stabilized Landfill Leachate – Response Surface Methodological Approach'. Together they form a unique fingerprint.

Cite this