The use of entropy based fuzzy membership on weighted logistic regression for the unbalanced data

Ajiwasesa Harumeka*, Santi Wulan Purnami, Santi Puteri Rahayu

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

Abstract

Logistic regression is a popular and powerful classification method. The addition of ridge regularization and optimization using a combination of linear conjugate gradients and IRLS, called Truncated Regularized Iteratively Re-weighted Least Square (TR-IRLS), can outperform Support Vector Machine (SVM) in terms of processing speed, especially when applied to large data and have competitive accuracy. However, neither SVM nor TR-IRLS is good enough when applied to unbalanced data. Fuzzy Support Vector Machine (FSVM) is an SVM development for unbalanced data that adds fuzzy membership to each observation. The fuzzy membership makes the interest of each observation in the minority class higher than the majority class. Meanwhile, TR-IRLS developed into a Rare Event Weighted Logistic Regression (RE-WLR) by adding weight to logistic regression and bias correction. The weighting of the RE-WLR depends on the undersampling scheme. It allows an "information loss". Between FSVM and RE-WLR has a similarity, the weight based only on class differences (minority or majority). Entropy Based Fuzzy Support Vector Machine (EFSVM) is a method used to accommodate the weaknesses of FSVM by considering the class certainty of class observations. As a result, EFSVM is able to improve SVM performance for unbalanced data, even beating FSVM. For this reason, we use EF on the TR-IRLS algorithm to classify large and unbalanced data, as a proposed method. This method is called Entropy-Based Fuzzy Weighted Logistic Regression (EF-WLR). This Research shows the review of EF-WLR for unbalanced data classification.

Original languageEnglish
Article number012048
JournalIOP Conference Series: Earth and Environmental Science
Volume880
Issue number1
DOIs
Publication statusPublished - 10 Nov 2021
Event4th International Conference on Science and Technology Applications in Climate Change, STACLIM 2021 - Selangor, Virtual, Malaysia
Duration: 1 Jul 20212 Jul 2021

Fingerprint

Dive into the research topics of 'The use of entropy based fuzzy membership on weighted logistic regression for the unbalanced data'. Together they form a unique fingerprint.

Cite this