TY - JOUR
T1 - Thermal and dynamic mechanical properties of polyethylene glycol/quartz composites for phase change materials
AU - Fauziyah, Nur Aini
AU - Hilmi, Allif Rosyidy
AU - Zainuri, Mochamad
AU - Asrori, Mohamad Zainul
AU - Mashuri, Mashuri
AU - Jawaid, Mohammad
AU - Pratapa, Suminar
N1 - Publisher Copyright:
© 2019 Wiley Periodicals, Inc.
PY - 2019/11/10
Y1 - 2019/11/10
N2 - Polyethylene glycol (PEG)/quartz (denoted as BP/Q) composites have been investigated as candidates of phase change materials (PCMs) due to their thermomechanical properties around the glass transition temperature as well as thermal properties between 30 and 600 °C. Quartz (q-SiO2) powders were extracted from local sand in Tanah Laut, Pelaihari, South Kalimantan, Indonesia. The composites were prepared by dispersing q-SiO2 powders in the PEG matrix followed by the wet mixing process. The thermal properties of the composites were characterized using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), while the thermomechanical properties were examined using a dynamic mechanical analyzer (DMA) in a three-point bending mode around the PEG glass transition temperature range (−100–50°C). The morphology and interface bonding were investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). From the DSC measurement, the endothermic peak of the composites showed a shift of approximately 7–12 °C toward higher temperatures than that of the pure polymer. The melting enthalpy values (ΔHm) of the BP/Q composites covered the required PCM application range, that is, between 139 and 182 J/g. The TGA of the composites showed that thermal degradation occurs in the range of 250–450 °C. We found that solid–solid PCMs (ssPCMs) were successfully fabricated with the addition of 10 and 20 wt% q-SiO2. From DMA characterization, the BP/Q 20 wt% composite exhibited the maximum E’ and the minimum energy dissipation (E”). Its E’ value was approximately 250 MPa more than that of the pure PEG. The glass transition (Tg) temperatures of PEG and BP/Q composites (5, 10, and 20 wt%) were around −24.5, −19.1, −17.1, and − 5.3 °C, respectively. In addition, the E” and tan δ values decreased with q-SiO2 filler content. Furthermore, the Cole-Cole plots of the BP/Q composites revealed a better interfacial bonding between the q-SiO2 and the PEG matrix in the composites with higher silica content. A compact morphology was shown by the BP/Q 20 wt% composite due to high silica concentration.
AB - Polyethylene glycol (PEG)/quartz (denoted as BP/Q) composites have been investigated as candidates of phase change materials (PCMs) due to their thermomechanical properties around the glass transition temperature as well as thermal properties between 30 and 600 °C. Quartz (q-SiO2) powders were extracted from local sand in Tanah Laut, Pelaihari, South Kalimantan, Indonesia. The composites were prepared by dispersing q-SiO2 powders in the PEG matrix followed by the wet mixing process. The thermal properties of the composites were characterized using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), while the thermomechanical properties were examined using a dynamic mechanical analyzer (DMA) in a three-point bending mode around the PEG glass transition temperature range (−100–50°C). The morphology and interface bonding were investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). From the DSC measurement, the endothermic peak of the composites showed a shift of approximately 7–12 °C toward higher temperatures than that of the pure polymer. The melting enthalpy values (ΔHm) of the BP/Q composites covered the required PCM application range, that is, between 139 and 182 J/g. The TGA of the composites showed that thermal degradation occurs in the range of 250–450 °C. We found that solid–solid PCMs (ssPCMs) were successfully fabricated with the addition of 10 and 20 wt% q-SiO2. From DMA characterization, the BP/Q 20 wt% composite exhibited the maximum E’ and the minimum energy dissipation (E”). Its E’ value was approximately 250 MPa more than that of the pure PEG. The glass transition (Tg) temperatures of PEG and BP/Q composites (5, 10, and 20 wt%) were around −24.5, −19.1, −17.1, and − 5.3 °C, respectively. In addition, the E” and tan δ values decreased with q-SiO2 filler content. Furthermore, the Cole-Cole plots of the BP/Q composites revealed a better interfacial bonding between the q-SiO2 and the PEG matrix in the composites with higher silica content. A compact morphology was shown by the BP/Q 20 wt% composite due to high silica concentration.
KW - applications
KW - glass transition
KW - thermal properties
KW - thermoplastics
UR - http://www.scopus.com/inward/record.url?scp=85067351208&partnerID=8YFLogxK
U2 - 10.1002/app.48130
DO - 10.1002/app.48130
M3 - Article
AN - SCOPUS:85067351208
SN - 0021-8995
VL - 136
JO - Journal of Applied Polymer Science
JF - Journal of Applied Polymer Science
IS - 42
M1 - 48130
ER -