Topology optimization on geometry of 3D printed "impulse RC Alien 4 Inch" racing quadcopter frame with polylactic acid material

Imang Eko Saputro*, Alief Wikarta, Ali Muhtar

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

The racing quadcopter is one of Unmanned Aerial Vehicle (UAV) type which is for high speed. A frame of the racing quadcopter used carbon fiber material because of its lightness and rigidity; however, it is costly. Because of that, it is essential to consider alternative material, such as polylactic acid (PLA). However, the PLA frame needs some optimization treatments to achieve similar mass and rigidity as the carbon fiber. One of the structural optimization methods that can be used is topology optimization. Although this method will generate some intricate details in geometry, which is difficult for conventional manufacturing, however, with the additive manufacturing technology, the complex geometry is no longer a barrier. The aim of this research is prototyping "the best design" frame using a 3D printer, based on simulation results of stress and total deformation of the racing quadcopter from topology optimization method. The methodology started from the quadcopter modeling, initial simulation with carbon fiber frame and PLA frame using the static structural simulation of finite element software. Continued by topology optimization simulation with some retain masses to obtain some redesign models. The next stage is the final simulation on the redesign models using a similar method as the initial simulation, and then the analysis is established to achieve "the best design". The last stage is model manufacturing using a 3D printer, model testing, and result evaluation. As a result, "the best design" is achieved from doubling the thickness of PLA frame, establishing redesign of 60% retains mass topology optimization. Then both "the best design" manufacturing and testing are done well, although with some defects.

Original languageEnglish
Title of host publicationInnovative Science and Technology in Mechanical Engineering for Industry 4.0
Subtitle of host publicationProceedings of the 4th International Conference on Mechanical Engineering, ICOME 2019
EditorsVivien Djanali, Fahmi Mubarok, Bambang Pramujati, Suwarno
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735419346
DOIs
Publication statusPublished - 10 Dec 2019
Event4th International Conference on Mechanical Engineering: Innovative Science and Technology in Mechanical Engineering for Industry 4.0, ICOME 2019 - Yogyakarta, Indonesia
Duration: 28 Aug 201929 Aug 2019

Publication series

NameAIP Conference Proceedings
Volume2187
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference4th International Conference on Mechanical Engineering: Innovative Science and Technology in Mechanical Engineering for Industry 4.0, ICOME 2019
Country/TerritoryIndonesia
CityYogyakarta
Period28/08/1929/08/19

Fingerprint

Dive into the research topics of 'Topology optimization on geometry of 3D printed "impulse RC Alien 4 Inch" racing quadcopter frame with polylactic acid material'. Together they form a unique fingerprint.

Cite this