TY - GEN
T1 - Treatment of chromium contaminated soil using bioremediation
AU - Purwanti, Ipung Fitri
AU - Putri, Tesya Paramita
AU - Kurniawan, Setyo Budi
N1 - Publisher Copyright:
© 2017 Author(s).
PY - 2017/11/14
Y1 - 2017/11/14
N2 - Chromium contamination in soil occurs due to the disposal of chromium industrial wastewater or sludge that excess the quality standard. Chromium concentration in soil is ranged between 1 to 300 mg/kg while the maximum health standard is 2.5 mg/kg. Bioremediation is one of technology that could be used for remediating heavy metal contamination in soil. Bacteria have an ability to remove heavy metal from soil. One bacteria species that capable to remove chromium from soil is Bacillus subtilis. The aim of this research was to know the chromium removal percentage in contaminated soil by Bacillus subtilis. Artificial chromium contaminated soil was used by mixing 425gram sand and chromium trichloride solution. Concentration of chromium added into the spiked soil were 50, 75, and 100 mg/L. During 14 days, pH, soil temperature and soil moisture were tested. Initial and final number of bacterial colony and chromium concentration analysed. The result showed that the highest percentage of chromium removal was 11% at a chromium concentration of 75 mg/L.
AB - Chromium contamination in soil occurs due to the disposal of chromium industrial wastewater or sludge that excess the quality standard. Chromium concentration in soil is ranged between 1 to 300 mg/kg while the maximum health standard is 2.5 mg/kg. Bioremediation is one of technology that could be used for remediating heavy metal contamination in soil. Bacteria have an ability to remove heavy metal from soil. One bacteria species that capable to remove chromium from soil is Bacillus subtilis. The aim of this research was to know the chromium removal percentage in contaminated soil by Bacillus subtilis. Artificial chromium contaminated soil was used by mixing 425gram sand and chromium trichloride solution. Concentration of chromium added into the spiked soil were 50, 75, and 100 mg/L. During 14 days, pH, soil temperature and soil moisture were tested. Initial and final number of bacterial colony and chromium concentration analysed. The result showed that the highest percentage of chromium removal was 11% at a chromium concentration of 75 mg/L.
UR - http://www.scopus.com/inward/record.url?scp=85035232923&partnerID=8YFLogxK
U2 - 10.1063/1.5011527
DO - 10.1063/1.5011527
M3 - Conference contribution
AN - SCOPUS:85035232923
T3 - AIP Conference Proceedings
BT - Proceedings of the 3rd International Conference on Construction and Building Engineering, ICONBUILD 2017
A2 - Borgan, William Reza
A2 - Saloma, null
A2 - Victor, null
A2 - Buntoro, Flandy
PB - American Institute of Physics Inc.
T2 - 3rd International Conference on Construction and Building Engineering: Smart Construction Towards Global Challenges, ICONBUILD 2017
Y2 - 14 August 2017 through 17 August 2017
ER -