TY - JOUR
T1 - Utilizing Structural Equation Modeling–Artificial Neural Network Hybrid Approach in Determining Factors Affecting Perceived Usability of Mobile Mental Health Application in the Philippines
AU - Yuduang, Nattakit
AU - Ong, Ardvin Kester S.
AU - Vista, Nicole B.
AU - Prasetyo, Yogi Tri
AU - Nadlifatin, Reny
AU - Persada, Satria Fadil
AU - Gumasing, Ma Janice J.
AU - German, Josephine D.
AU - Robas, Kirstien Paola E.
AU - Chuenyindee, Thanatorn
AU - Buaphiban, Thapanat
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/6/1
Y1 - 2022/6/1
N2 - Mental health problems have emerged as one of the biggest problems in the world and one of the countries that has been seen to be highly impacted is the Philippines. Despite the increasing number of mentally ill Filipinos, it is one of the most neglected problems in the country. The purpose of this study was to determine the factors affecting the perceived usability of mobile mental health applications. A total of 251 respondents voluntarily participated in the online survey we conducted. A structural equation modeling and artificial neural network hybrid was applied to determine the perceived usability (PRU) such as the social influence (SI), service awareness (SA), technology self-efficacy (SE), perceived usefulness (PU), perceived ease of use (PEOU), convenience (CO), voluntariness (VO), user resistance (UR), intention to use (IU), and actual use (AU). Results indicate that VO had the highest score of importance, followed by CO, PEOU, SA, SE, SI, IU, PU, and ASU. Having the mobile application available and accessible made the users perceive it as highly beneficial and advantageous. This would lead to the continuous usage and patronage of the application. This result highlights the insignificance of UR. This study was the first study that considered the evaluation of mobile mental health applications. This study can be beneficial to people who have mental health disorders and symptoms, even to health government agencies. Finally, the results of this study could be applied and extended among other health-related mobile applications worldwide.
AB - Mental health problems have emerged as one of the biggest problems in the world and one of the countries that has been seen to be highly impacted is the Philippines. Despite the increasing number of mentally ill Filipinos, it is one of the most neglected problems in the country. The purpose of this study was to determine the factors affecting the perceived usability of mobile mental health applications. A total of 251 respondents voluntarily participated in the online survey we conducted. A structural equation modeling and artificial neural network hybrid was applied to determine the perceived usability (PRU) such as the social influence (SI), service awareness (SA), technology self-efficacy (SE), perceived usefulness (PU), perceived ease of use (PEOU), convenience (CO), voluntariness (VO), user resistance (UR), intention to use (IU), and actual use (AU). Results indicate that VO had the highest score of importance, followed by CO, PEOU, SA, SE, SI, IU, PU, and ASU. Having the mobile application available and accessible made the users perceive it as highly beneficial and advantageous. This would lead to the continuous usage and patronage of the application. This result highlights the insignificance of UR. This study was the first study that considered the evaluation of mobile mental health applications. This study can be beneficial to people who have mental health disorders and symptoms, even to health government agencies. Finally, the results of this study could be applied and extended among other health-related mobile applications worldwide.
KW - artificial neural network
KW - mental health
KW - mobile mental health application
KW - technology acceptance model
UR - http://www.scopus.com/inward/record.url?scp=85131706578&partnerID=8YFLogxK
U2 - 10.3390/ijerph19116732
DO - 10.3390/ijerph19116732
M3 - Article
C2 - 35682313
AN - SCOPUS:85131706578
SN - 1661-7827
VL - 19
JO - International Journal of Environmental Research and Public Health
JF - International Journal of Environmental Research and Public Health
IS - 11
M1 - 6732
ER -