Volumetric Analysis of Brain Tumor Magnetic Resonance Image

Hapsari Peni Agustin, Hanik Badriyah Hidayati, Adri Gabriel Sooai, I. Ketut Eddy Purnama, Mauridhi Hery Purnomo

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Citations (Scopus)

Abstract

Volumetric analysis of brain tumors is a decisive thing in the detection of brain tumors to determine the patient's lifetime followed by action to the patient. A few studies had been shown explicitly quantified the brain tumor volume while the analysis of brain tumor volumetric by expert limited with the huge data of brain tumor patient MRI. Thorough the importance of brain tumor analysis in clinical used, the purpose of this research is to evaluate the similarity of a semi-automatic segmentation tool for brain tumor image analysis. The agreement was compared by using differences of means with 95% limits of agreement (LoA). Brain tumor segmentation was obtained by using Fast Marching and Grow Cut segmentation methods. Preoperative MRI images of 20 T2 MRI of low-grade glioma patients from The Cancer Imaging Archive (TCIA) database were used to analyze brain tumor volume. The volume obtained from the two segmentation methods is based on the similarity between the two using the intra-method agreement between two segmentation methods with a 95% limit of agreement (LoA) value and difference volume average of 920 mm3 or 0.92 mL. Its shown that both methods had the same performance.

Original languageEnglish
Title of host publication2019 International Conference on Computer Engineering, Network, and Intelligent Multimedia, CENIM 2019 - Proceeding
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728129655
DOIs
Publication statusPublished - Nov 2019
Event2nd International Conference on Computer Engineering, Network, and Intelligent Multimedia, CENIM 2019 - Surabaya, Indonesia
Duration: 19 Nov 201920 Nov 2019

Publication series

Name2019 International Conference on Computer Engineering, Network, and Intelligent Multimedia, CENIM 2019 - Proceeding
Volume2019-November

Conference

Conference2nd International Conference on Computer Engineering, Network, and Intelligent Multimedia, CENIM 2019
Country/TerritoryIndonesia
CitySurabaya
Period19/11/1920/11/19

Keywords

  • Difference Volume Average
  • Fast Marching
  • Grow Cut
  • Limits of Agreement

Fingerprint

Dive into the research topics of 'Volumetric Analysis of Brain Tumor Magnetic Resonance Image'. Together they form a unique fingerprint.

Cite this