TY - JOUR
T1 - XRD, XANES, and Electrical Conductivity Analysis of La- and Zr-Doped Ba0.5Sr0.5Fe0.9Cu0.1O3-δ Suitable for IT-SOFC Cathodes
AU - Fitriana, F.
AU - Muniroh, M.
AU - Zainuri, M.
AU - Kidkhunthod, P.
AU - Kato, M.
AU - Suasmoro, S.
N1 - Publisher Copyright:
© 2021, The Minerals, Metals & Materials Society.
PY - 2021/10
Y1 - 2021/10
N2 - Lanthanum- and zirconium-doped perovskite Ba0.5Sr0.5Fe0.9Cu0.1O3-δ ceramics, i.e., LaBa0.5Sr0.5Fe1.8Cu0.2O6-δ (LBSFC) and Ba0.5Sr0.5Fe0.85Cu0.1Zr0.05O3-δ (BSFCZ), were synthesized and characterized. The characterizations include x-ray diffraction, scanning electron microscopy, x-ray near-edge absorption spectroscopy of the Fe K-edge and Cu K-edge, iodometric titration, and electrical conductivity measurements. The structure of BSFCZ was pseudo-cubic single perovskite, whereas LBSFC was orthorhombic double perovskite. It was also discovered that the iron and copper in the octahedron-site has a mixed oxidation state with iron having 3+/4+ and copper 2+/3+. The ratio of Fe3+/Fe4+ was found to be 59/41 for LBSFC and 75/25 for BSFCZ. Similarly, copper has a mixed Cu2+/Cu3+ = 24/76 for BSFCZ and 44/56 for LBSFC. The unit cell symmetry, the presence of La3+, and the formation of Fe4+/Cu3+ are thought to be responsible for the improvement in the electrical conductivity and performance of the LBSFC. In contrast, the Zr4- stabilized perovskite structure was unfavorable for electrical conductivity. The electrical performance of the LBSFC achieved a maximum conductivity σ = 150 S/cm-1 at 500°C.
AB - Lanthanum- and zirconium-doped perovskite Ba0.5Sr0.5Fe0.9Cu0.1O3-δ ceramics, i.e., LaBa0.5Sr0.5Fe1.8Cu0.2O6-δ (LBSFC) and Ba0.5Sr0.5Fe0.85Cu0.1Zr0.05O3-δ (BSFCZ), were synthesized and characterized. The characterizations include x-ray diffraction, scanning electron microscopy, x-ray near-edge absorption spectroscopy of the Fe K-edge and Cu K-edge, iodometric titration, and electrical conductivity measurements. The structure of BSFCZ was pseudo-cubic single perovskite, whereas LBSFC was orthorhombic double perovskite. It was also discovered that the iron and copper in the octahedron-site has a mixed oxidation state with iron having 3+/4+ and copper 2+/3+. The ratio of Fe3+/Fe4+ was found to be 59/41 for LBSFC and 75/25 for BSFCZ. Similarly, copper has a mixed Cu2+/Cu3+ = 24/76 for BSFCZ and 44/56 for LBSFC. The unit cell symmetry, the presence of La3+, and the formation of Fe4+/Cu3+ are thought to be responsible for the improvement in the electrical conductivity and performance of the LBSFC. In contrast, the Zr4- stabilized perovskite structure was unfavorable for electrical conductivity. The electrical performance of the LBSFC achieved a maximum conductivity σ = 150 S/cm-1 at 500°C.
KW - Perovskite
KW - conductivity
KW - double perovskite
KW - oxidation state
KW - oxygen vacancy
UR - http://www.scopus.com/inward/record.url?scp=85110570675&partnerID=8YFLogxK
U2 - 10.1007/s11664-021-09110-4
DO - 10.1007/s11664-021-09110-4
M3 - Article
AN - SCOPUS:85110570675
SN - 0361-5235
VL - 50
SP - 5838
EP - 5845
JO - Journal of Electronic Materials
JF - Journal of Electronic Materials
IS - 10
ER -